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We generalize the result of Hamhalter and Ptfik showing that an inner product 
space whose dimension is either a nonmeasurable cardinal or an arbitrary 
cardinal is complete iff its lattice of strongly closed subspaces possesses at least 
one state or one completely additive state, respectively. Moreover, we show that 
this lattice of any separable space possesses many ~r-finite measures, and we 
give the Gleason analogue for them. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

There  are m a n y  charac te r i za t ions  o f  the comple teness  o f  an inner  
p r o d u c t  space  via  a lgeb ra i c - topo log ica l  p rope r t i e s  ( G u d d e r ,  1974, 1975; 
G u d d e r  and  H o l l a n d ,  1975) or  by  a lgebra ic  cond i t ions  on the lat t ice ~T(V) 
o f  all s t rongly  c losed  subspaces  ( A m e m i y a  and  Araki ,  1966; Ho l l and ,  1969). 

The  cha rac t e r i za t ion  o f  H a m h a l t e r  and  Ptfik (1987) is in teres t ing:  a 
s epa rab le  real  inner  p r o d u c t  space  is comple t e  iff ~ ( V )  possesses  at  least  
one  state. 

In  the  p resen t  note  we genera l ize  the i r  resul t  to n o n s e p a r a b l e  inner  
p r oduc t  spaces .  Moreover ,  we show that  any  incomple t e  s epa rab le  inner  
p r o d u c t  space  possesses  m a n y  g-f in i te  measures ,  and  we give the G l e a s o n  
a n a l o g u e  for  these  measures .  

Let V be  an inner  p r o d u c t  space  over  the field C o f  real  or  c omp le x  
number s  with inner  p r o d u c t  ( . ,  �9 ). Fo r  any  subset  A of  V, A 1 deno tes  the 
set o f  all  x ~ V such tha t  (x, y )  = 0 for  all y c A. We shall  call  A a s t rongly  
c losed  subspace  o f  V if  (A• • = A. Then ~ ( V ) ,  the  set o f  all s t rongly  c losed  
subspaces  o f  V, is a comple t e  o r t h o c o m p l e m e n t e d  lat t ice with the  j o in  V, 
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meet A, and orthocomplementation _L defined by 

V A , =  sp A, A A, = A A,, A ~ A  • 
t c r  t o T  t e T  

and with the minimal and maximal elements 0 = {0} and V, respectively 
(here sp denotes the linear span). 

~ ( V )  is said to be orthomodular  if, for any pair A, B e ~ ( V )  with 
A c B, we have B = A v (B ^ A• Amemiya and Araki (1967) proved that 
V is complete iff ~ ( V )  is orthomodular.  

2. MEASURES AND STATES 

By OtcT At we mean the join of mutually orthogonal elements A ,e  
~ ( V ) ,  t e T. I f0  # x e V, then by Px we denote the one-dimensional subspace 
of  V spanned over x. 

A mapping m: ~ ( V ) ~  [0, oo] with m(0)=  0 is said to be (i) a finitely 
additive measure if m ( M O N ) = m ( M ) + m ( N ) ;  (ii) a measure if 

CX3 

m(Gi~ 1 Mi)=~i=l m(M~); and (iii) a completely additive measure if 
m(~),~r M,) =Y.,cT re(M,) for any index set T. If, in particular, m(V) = 1, 
m is called a finitely additive state, state, completely additive state according 
to (i)-(iii). 

The Gleason theorem (Gleason, 1957) says that if V is a complete 
separable inner product space of dimension ~2, then any finite measure m 
on ~ ( V )  is in one-to-one correspondence with positive Hermitian operators 
T on V of  finite trace via 

m(M)=tr(TM),  M e ~ ( V )  (1) 

(we identify a subspace M with its orthoprojector pM on it). Eilers and 
Horst (1975) and Drisch (1979) proved that the assumption of  separability 
of  a complete space V is superfluous when V is of dimension of nonmeasur- 
able cardinality (for definition see below). Maeda (1980) and Dvure6enskij 
(1987) give the characterizations of  measures given by (1). 

We say, according to Ulam (1930), that the cardinal I is nonmeasurable 
if there is n o  probability measui:e ~, on the power set 2 A of  a set A whose 
cardinality i s / ,  such that ~,({a}) = 0 for any a e A. For example, any finite 
cardinal No (the cardinal of  all integers) and c (the cardinal of all reals, 
under the continuum hypothesis) are nonmeasurable cardinals. 

By the dimension of  an inner product space we mean the cardinality 
of any maximal orthonormal set in V. 

Hamhalter  and Ptllk (1987) proved that for a separable inner product 
space V the existence of  a state on Lf(V) entails the completeness of V. 
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Hence, for any state m there is a unique density operator T ~ Tr(V) such that 

m (M)  = t r (TM),  M ~ ~ ( V )  (2) 

where ]~]t denotes the completion of M in the complete space 17.. 
It can be shown that a mapping m on ~ ( V )  defined via (2) has the 

property 

Example 1. Let H be a separable Hilbert space with an orthonormal 
basis {e,}n~_-l, and let V be the linear manifold of  H generated by the 

oo e oo vectors Y~n=l e~/n, e2, e3 , . . .  �9 Then { ,},=2 is a maximal orthonormal set 
in V, and = 0 , = 2  Pe �9 Put r - - - (  el)el and define m via (2). Then 

l = m ( V ) #  ~ m(Pe, ,)=0 
. = 2  

It is clear that any separable inner product space is countable- 
dimensional, but the converse is not true. Indeed, the following example 
is correct [for details see Gudder  (1974) for m = No and Dwure~enskij (1986b) 
for the general case]. 

Example 2. Let m be an infinite cardinal such that m~o> m [in par- 
ticular, let m = ~r N,o~ (n---1), N,~, etc.]. Then in any Hilbert space of 
dimension m ~o there is a dense submanifold V of dimension m containing 
no orthonormal basis of H. 

Below we extend the result of Hamhalter and Pt~ik (1987) to nonsepar- 
able inner product spaces, using some of  their ideas. 

Lemma 1. Let m be a finitely additive state on 5~(V). If  A c B, A, B 
~ ( V ) ,  then 

m(B)  = m ( A  v (B ^ A~)) (4) 

m(A)  ~ re(B) (5) 

Moreover, if for any distinct A, B ~ ~ ( V ) ,  A c B, there is a finitely additive 
state m such that m ( A ) <  m(B) ,  then ~ ( V )  is orthomodular. 

Proof It is evident that if A c B, then A v ( B ^ A X ) c  B. A simple 
calculation shows 

m ( A  v (B ^ A• = m ( A )  + m(B  ^ A • = re(A) + 1 -- m(B:- v A) 

= r e ( A ) +  1 - m ( B  ~) - r e ( a )  = r e ( B )  

which gives (4) and (5) and completes the proof. �9 
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The basic lemma is the following result of  Hamhalter  and Pt~ik (1987), 
which is here presented in a more general form; its proof  is identical to 
that of  the original one and therefore is omitted. 

Lemma.2. Let V be an arbitrary inner product  space. Let v-be a unit 
vector in the completion I7" of  V. Then for every e > 0, there exists a 8 < 0 
such that the following statement holds: If  w ~ V is a unit vector such that 
II v-wll < 8, then for any finitely additive state m on ~ ( V )  and for each 
A ~ ( V )  satisfying the properties v i A ,  3 _ d i m A < o o ,  we have the 
inequality 

Im(Av P w ) - m ( A ) - m ( P w ) [  < - e (6) 

Theorem 3. Let V be an inner product space whose dimension is an 
infinite nonmeasurable cardinal. If  ~ ( V )  possesses at least one state, then 
V is complete. 

Proof 1. Let rn be a state on ~ ( V ) .  We show that m is completely 
additive. Let M = O , ~ r M , ,  M , ~ ( V ) ,  tc  T. Define a function / . t : 2 r ~  
[0, 1] via 

/~(S) = { O  ( ~  s M,)  ifif s=@S~@ 

Then /z is a probability measure on 2 T Hence, due to Ulam (1930), there 
is a countable subset To c T such that/.~ ( T -  To) = 0. Therefore, m (M,) = 0 
for any t ~ To and 

m ( M ) = I z ( T ) = t z ( T o ) + l z ( T - T o ) =  E m(M,)+ Y. m(M,) 
t ~  T o tC: T o 

2. Let now.{e,: t~ T} be a maximal orthonormal system in a given 
B ~ ( V )  and define Bo=t~),~r Pe,. Due to the maximality of  {e,: t~ T} 
and (4), we conclude 

m(Bo) = m(B) (7) 

In particular, if B = V, then there is unit vector e ~ V such that 

m(Pe)>O (8) 

3. Now we claim to show that Bo= B. Suppose the converse. Then 
/~o ~/~  and choose a unit vector v ~/~ which is orthogonal to/~o. Let e be 
an element of V with (8). Applying Lemma 2 to e = rn(Pe)/2> 0 and to/~, 
we can find a 8 > 0 such that, for any unit vector z ~ B with IIz- vii < 8 and 
any A_Lv, 3 - <d imA<oo ,  (6) holds. Define a unitary operator U: V ~  V 
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such that Ue = z and Uf = f  for any f•  z}) ~ ~ (V ) .  Then ml defined 
by m l ( M ) =  m(U-~(M)) ,  M ~ ( V ) ,  is a state on ~ ( V ) .  

Let To={ t l , t 2 , . . . }  be a countable subset of T such that 
m1(G,~To Pe,)=0- Define finite-dimensional subspaces B, =@~=1 sp(e,,,). 
Hence, there is B, o such that rnl(B~o) > ml(Bo) - e. Then we have 

ml(B) >- ml(B. o v Pz) >- mi(B~o) + ml(Pz) - e > ml(Bo) + e - e = ml(Bo) 

which contradicts (7). 
4. Finally, let A and B be two elements of Lf(V) with A ~  B. Using 

methods from the second and third parts of  the present proof, we may find 
a state m2 on ~ ( V )  such that m2(A)< m2(B). Due to Lemma 1, ~ ( V )  is 
orthomodular,  and the result of Amemiya and Araki (1966) yields V is 
complete. The proof  is finished. �9 

Corollary 4. Example 2 gives a stateless orthocomplemented lattice for 
a nonseparable inner product  space. 

Theorem 5. Let V be an infinite-dimensional inner product space. If 
~ ( V )  possesses at least one completely additive state, then V is complete. 

Proof The proof  follows the ideas of the proof  of Theorem 3. I 

Theorem 6. An inner product space V is complete iff Z;(V) possesses 
at least one state having a carrier, i.e., there is an element Mo e ZP(V) such 
that m ( N ) = 0  iff N•  

Proof We claim to show that m is completely additive. Let M = 
@,~ r M,. Denote, for any integer n, T, = { t ~ T: m (M,) --- 1 / n }. The finite- 
ness of  a state m yields that any T, is a finite subset of T. For 

T, any t~ o=~..J,=~ T, we have m ( M , ) = 0 ;  consequently, M,• and 
@,Zro Mt• Hence, m(@,~To Mr) = 0  and 

m(M)=m(@,croMt)+m(@~roM,)=Y. ,~rom(M,)+E, , rom(M,)  �9 

Corollary 7. An inner product space V is complete iff there is a unit 
vector e ~ V such that the equality 

~0=1 Mne2 = n=l ~ IIM"e[12 

holds for any sequence of orthogonal elements {M,}~=I c ~ (V ) .  

Proof. The function m~: M ~ l l ~ e l l  ~, M ~ ( V ) ,  ~s a state on ZP(V) 
with a carrier P~. �9 

We note that, according to Maeda's theorem (Maeda, 1980), any totally 
additive state on ~ ( V )  of a complete inner product space V has a support. 
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3. G L E A S O N ' S  T H E O R E M  A N D  o ' -FINITE M E A S U R E S  

We show that on ~ ( V )  of  any incomplete separable inner product  
space V there are many o--finite measures, and we give their characterization 
via Gleason's  formula for infinite measures. 

We recall that  a measure m on ~ ( V )  is o--finite if there is a sequence 
{ n} .= l , such tha t  = @ n = 1 M .  of  mutually orthogonal elements of  ~ ( V ) ,  M ~ V 

and m(M,,)<~ for any n - 1 .  
The mapping rn: ~ ( V )  --> [0, ~ ]  defitaed by m(M) = dim M, M ~ ~ ( V ) ,  

is a o--finite measure on Z~(V). Moreover,  if T is a continuous, positive, 
Hermitian operator  on V" with purely point spectrum consisting of  countably 
many nonzero points of  infinite multiplicity, then a mapping mr defined via 

mT(M) = tr(That), M ~ ~ ( V )  

is a (r-finite measure. Hence, the existence of  q-finite measures does not 
entail the completeness of  V. 

Theorem 8. Any q-finite measure m on s of  a separable inner 
product space has a carrier. 

Proof. Denote 

My={xc V: m(P~) < ~ } w { 0 }  (9) 

Mo={Xe V: m(Px)= 0'}w{0} (10) 

Due to the Lugovaja-Sherstnev lemma (Lugovaja and Sherstnev, 1980), My 
and Mo are linear submanifolds of  V. Moreover,  if {x.} c Mo and x. --> x e V, 
then x e Mo. Indeed, using the Gram-Schmid t  orthogonalization process 
to {x.}, we may find mutually orthogonal vectors { e . } c M o  such that 
vin=l  Px, = G ~ = I  Pc, for any n. Hence, 

m(iV=l Px,) =lim m(i=O 1 Pe~) =0 

The closedness of  V.~_-1 Px,, entails x ~ V,~_-I Px,, c Mo. 
Inasmuch as Mo is also a separable inner product  space, it contains 

an orthonormal  basis {Yi}. We assert Mo=OiPy,. Indeed, let N o = O i P y ,  
and let y ~ Mo, vlNo. Then 

(y, v) = Y~ (y, y~)(y,, v) -- 0 
i 

which gives y ~ N~ -• = No, so that Mo c No. Since for Px the or thomodular  
property holds, we conclude x ~ Mo, which entails No C Mo. 

Hence, the element M~ is a carrier of  m. �9 

Lemma 9. I f  m is a measure on ~ ( V )  of  a separable inner product  
space V, then m is monotone on ~ ( V ) .  
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Proof. Let A c  B. If m ( B ) = e c ,  then m(A)  < - m(B)  trivially. Suppose 
now m(B)<oo .  Due to the separability of V, A contains an orthonormal 
basis of A, {g.}. Put A. =@~_-~ Pg,, then A=@.Pg, ,  and 

re(A) = 2  m(Pg,,)=lira m(A~) 
tl I1 

i 

For any finite-dimensional A. we have 

B = A . ( B ^  l A~), n>-i 

which implies re(B) = m ( A . )  + m(B  c~ A~). Hence, 

re(B) = re(A)+lira m(B  n A~) (11) 
n 

which yields re(A)<_ re(B). �9 

To formulate our result, we need the following notions. Let B c 5~(V). 
By Tr(/~) we denote the class of all bounded operators T: B ~ B such that, 
for every orthonormal basis {x~} of/~, the series Y~. (Tx.,  x.)  converges and 
is independent of the basis used; the expression tr T := ~.. (Txn, xn) is called 
the trace of T. 

A bilinear form is a function t: D ( t ) x D ( t ) ~ C  [D( t )  is a linear 
submanifold in V called the domain of the definition of t] such that t is 
linear in both arguments, and t(otx, fly) = a~t(x,  y),  x, y e D( t ) ,  a, fl ~ C. 
If t(x, y) = t(y, x) for all x, y 6 D(t) ,  then t is said to be symmetric; if for 
a symmetric bilinear form t we have t(x, x)>-0 for all x c D(t ) ,  then t is 
said to be positive. Let B 6 5((V) and let B c D(t) .  Then, by t ~ B we mean 
a symmetric bilinear form with D( t  d? B) = B defined by t d? B(x, y) = t(x, y),  
x, y 6 B. If t qb B is induced by a trace operator T 6  Tr/~, that is, t d? B(x, y) = 
( Tx, y) for all x, y c B, then we say t d~ B ~ Tr(/~) and we put tr(t ~ B) = tr T. 

Lemma 10. Let m be a measure of a separable inner product space V. 
Let m ( B ) < e o  and dim B->3. Then there is a unique positive Hermitian 
operator TB: /~-~/~ such that TB 6 Tr(/~) and 

m(A)=tr(TB,4) ,  A 6 ~ ( V ) ,  A c B (12) 

Proof Since My defined by (10) is a linear submanifold of V, then, 
using the Gleason theorem for finite-dimensional subspaces of  finite 
measure, we conclude that the function q~: B ~ [0, co] defined via 

q~(f) = { o ( P f )  if O ~ f ~ B  
if f = 0  

is induced by some bounded,  positive, symmetric, bilinear form t~, with 
D ( t s ) = B .  Therefore, there is a unique, positive, Hermitian operator 
Ts:/~ ~ /~  such that 

~ ( f )  = t s ( f , f )  = (TBf, f ) ,  f e  B 
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Inasmuch as V is separable, B contains at least one orthonormal basis of 
B, {fn}, which is also the orthonormal basis of/~. Hence, 

m ( B ) = m ( G  Py,,,)=~n m(Py,,,) 

= Y. ~(fn) = Y. ( TBf , , f , )  
n n 

= tr(Ts/~) < oo 

which entails Ts ~ Tr(/~). 
Let now A c B, A c 2"(V). According to Lemma 9, re(A) < oo. Let us 

choose an orthonormal basis of A, {g,}; then 

m(A)  = Y. m( Pg,,) = Y~ ( Tsg~, g,) =tr( Tsfi~) �9 
n n 

The following Gleason theorem for w-finite measures on 2 ' (V) of  a 
separable inner product space V has been proved by Lugovaja and Sherstnev 
(1980) and generalized to nonseparable Hilbert spaces by Dvure~enskij 
(1985, 1986a). 

Theorem 11. (Gleason's theorem). Let m be a o--finite measure on 
2"(V) of a separable inner product space V. Then there is a unique sym- 
metric, positive, bilinear form t with D( t )  •177 V such that 

m(B)=~tr(td~ B) iff td? B~Tr( /~)  
(13) [oo otherwise 

Proof. Using Lemma 10, the system of  positive, symmetric, bilinear 
forms {tB: B ~ 2"(V), m(B)  < oo} defines a unique symmetric bilinear form 
t with D(t)  = M I via 

t ( f , f )  = t s ( f , f )  = m(Pf), f ~  Mf  

Suppose m ( B ) <  oo. In view of Lemma 10, there exists a positive Hermitian 
operator TB: B-+ B such that (12) holds. 

Conversely, let t qb B ~ Tr(/~). Hence, B c Mj and, for an orthonormal 
basis {f,} of  B, we have 

re(B) = Y~ m( Pf.) = Y~ t ( f , , f , )  
t l  n 

= 2  t ~ B ( f , , f , )  =t r ( t  ~ B) 
n 

<oo �9 

We do not know whether the Gleason and Maeda theorems hold for 
nonseparable inner product  spaces. 
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Corollary 12. Let rn be a o--finite measure on ~ ( V )  of a separable 
inner product space V. Let 0 <  m(B)< co for some B ~ ~ ( V ) .  Then there 
is a unit vector e ~ / ~  such that the mapping me: ~B := {A~ ~ ( V ) :  A c  B } ~  
[0, 1] defined via 

me(A ) = II,~ell 2, A ~ ~ z  (14) 

is a o'-additive function on ~B. 

Proof. Due to Lemma 10, there is a unique positive Hermitian operator 
T ~ T r ( / ~ )  such that (12) holds. Therefore, TB is of the form Ts= 
~,,, A . ( ' , f . ) f . ,  where A.>O and f ,  ~/~. The mappings m,: II f.II 2, A ~  
~ s ,  satisfy the inequality (3). We assert that in (3) the equality holds for 
any n. Indeed, if not, then for some OiM~ we have 

m(~)Mi)=~A.m,,(~Mi)>~A,~i m~(M,) 

The problem: If 0 <  re(B) <oo, is then B complete? 
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